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a b s t r a c t

We describe a novel procedure that uses an inverse method to determine unknown

parameters for impervious layers used in multilayer structures. The proposed model of

the multilayer structure is limited to an ideal double plate separated by an unbonded,

fibrous, sound-absorbing material. Experimental data were obtained by nearfield

acoustic holography for the calculation of the transmission loss of various multilayer

structures mounted in a window in a wooden box designed specifically for this purpose.

We used the Trochidis and Kalaroutis forecast model of acoustic insulation for

multilayer structures, which is based on a spatial Fourier transform. The experimental

pressure and velocity data were used as input data in the inverse method. By applying

the Trochidis and Kalaroutis model and using numerical methods to adjust the variables

that define the impervious layers of the system, the values of the unknown parameters

of the layers could then be calculated. For validation, the results were compared with

results obtained using the Ookura and Saito model, based on impedance coupling

between layers and using the statistical-energy-analysis model, which subdivides the

system into subsystems. We evaluate the measurement errors associated with the

construction of a hologram by nearfield acoustic holography, i.e., errors due to sensor

mismatch and position mismatch, in terms of their probabilities.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Various theories are used to describe the acoustic behaviour of multilayer structures, including the Ookura and Saito
model [1], based on impedance coupling between layers; the Trochidis and Kalaroutis [2] and Bruneau [3] models, based
on a spatial Fourier transform (SFT); the theory of Lauriks et al. [4], based on Biot’s theory; the theory of Crocker and Price,
based on the statistical-energy-analysis (SEA) model [5]; and the theory of Panneton and Atalla, based on finite element
methods [6]. Trochidis and Kalaroutis developed a method in which a matrix is obtained that defines a multilayer structure
[2]. This model is based on boundary conditions between the layers, yielding various equations with partial derivatives that
can be transformed into algebraic equations using a spatial Fourier transform. These algebraic equations can then be
solved, providing information about the acoustic variables of the multilayer structure. The model of Ookura and Saito
analyses the sound transmission index for a multilayer structure by impedance transfer for inclined-incident-angle waves
and random sound fields [1]. The SEA model divides a complex built-up structure into a number of subsystems. From an
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energy balance, based on the energy exchange between the subsystems and the energy dissipation within the subsystems,
an overall vibration response can be obtained for each subsystem [7].

Most models are based on two types of structural materials: sound-impervious materials and sound-absorbing
materials. For sound-absorbing materials such as mineral or organic wool, textile or glass fibre and open honeycomb-like
layers, a small portion of the incident sound is reflected. The air particles that penetrate through the material continue to
vibrate, causing friction against the walls of pores, which leads to a reduction in the kinetic energy of the particle velocity
via a friction-related transformation into thermal energy [8]. The absorption depends on the frequency and angle of the
incident sound wave. Sound propagation through sound-absorbing materials is usually characterized, in the case of
homogeneous, isotropic materials, by two complex values that depend on the sound frequency: a complex propagation
constant (G) and a complex characteristic impedance (Z) [9]. Other methods can also be used to characterize sound-
absorbing materials, for example the Kundt impedance tube [10,11]; many such methods are described in the literature
[9,12,13].

A material is considered to be impervious to sound if the pressure wave is unable to enter its interior. Such materials are
characterized by the fact that when an incident sound wave is present, the material acquires a vibration velocity, radiating
acoustic energy from the opposite face. Physically, no pressure wave crosses the material; instead, an incident wave
generates a vibration velocity that generates a transmitted pressure wave (air noise). Sound-impervious layers reflect most
of the energy of the wave. The acoustic wave causes vibration of a plate of the material and the acoustic field inside the
layer is characterized by a certain vibration velocity [1,2].

A thin, plane, uniform surface with a given rigidity is assumed; it vibrates with a small displacement amplitude. This
thin plate is characterized by a surface density m (in units of kg/m2) and a given rigidity [14]. Within the plate, the restoring
force is governed only by its rigidity. The general equation that governs the movement for symmetrical vibrations is
as follows:

r4wðx; y; tÞ þ
rð1� s2Þ

Yh2

q2wðx; y; tÞ

qt2
¼ 0 (1)

where r (kg/m3) is the volume density of the material, s the Poisson coefficient, Y (N/m2) the Young’s modulus and h (m)
the radius of curvature of the surface, which has a value given by h ¼ L=

ffiffi
½
p
�12, where L is the thickness of the plate. Eq. (1)

can also be expressed as follows:

Dr4wðx; y; tÞ þ rL
q2wðx; y; tÞ

qt2
¼ 0 (2)

where D (N m) is the flexural rigidity of the plate, given by

D ¼
YL3

12ð1� s2Þ
(3)

A number of mathematical models have been developed to estimate the relationship between the transmitted and incident
pressure waves, i.e., to estimate the coefficient of sound transmission of the impervious material or a layer of it. These
models generally require accurate data on the elastic properties of the material, as this is the most important factor in
terms of vibration velocity. The surface density also affects transmission coefficients at low frequencies. Models that take
account of this effect also require values for the flexural stiffness (D), surface density (r), thickness (h) and loss factor (Z) of
the layer [15].

Inverse analysis normally refers to the parameters of a system that provide the best fit between the calculated and
observed acoustic behaviour. Inverse analysis is more complex than direct analysis, as the mathematical problem consists
of the minimization of a nonlinear function. This function is an error function that is calculated as the difference between
the calculated and measured data using a given combination of parameters. Such techniques are useful because the
calculated parameters can be used in making estimates for future stages of the same project, thereby minimizing potential
inaccuracies in the model employed [16,17]. Various studies have made use of inverse methods for determining material
properties based on finite element analysis and modal analysis [18–20].

In the present paper, we use an inverse method to determine unknown parameters for multilayer structures, using
values obtained from nearfield acoustic holography (NAH) as input data and the multilayer prediction model described
above. The NAH technique is based on a measurement of the amplitude and phase of the sound pressure using an array
microphone positioned in a plane that is both parallel and close to the measurement area. Using digital data-processing
techniques, NAH values can be used to calculate acoustic magnitudes on the object surface by back-propagation of the
acoustic field. The main advantage of NAH is that the sound field in any other plane of the object can be reconstructed from
2-D values; this reconstructed sound field is termed a hologram [21–25]. There exist various sources of measurement error
associated with the construction of a hologram by NAH, namely errors due to sensor mismatch and position mismatch. We
have studied these errors in terms of their probabilities, bias and random errors [26]. This approach can be used in practical
applications because the theoretical models used are normally applied to ideal partitions with elastic properties that do not
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vary with the incidence angle of the sound wave. Therefore, complementary calculation techniques can be used to ensure
the optimal application of the theoretical models to real structures, with no need for real-time measurements.

2. Fundamentals

2.1. The inverse method

Once the values of the parameters that characterize the layers and sound-absorbing material of a system are known, the
Trochidis and Kalaroutis model can be used to estimate the transmission loss (TL) in the multilayer structure. In an inverse
model, the values of the experimental transmission loss can be used to obtain the system parameters that achieve the best
fit between the theoretical and experimental results.

The inverse method for the identification of parameters is based on iterative loops between the experimental data and
the prediction model, using several different values of the parameters of the structural materials to optimize the results
and minimize the model error. To this end, we use an error function that has a minimum value for the most suitable
parameters of the plates (Fig. 1).

Parameter identification techniques are used to obtain the parameters of the model that provide the best fit between the
real-time measurements and the model predictions. The problem of estimating parameters using real-time measurements
can be solved by using an explicitly formulated model that relates a number of measurements x to a certain number of
parameters of which we have no a priori knowledge:

x ¼ ZðyÞ (4)

where Z represents the model. The relation expressed by Z is nonlinear. The inverse problem consists of finding a set of
parameters y such that the variables x̂i calculated using those parameters via Eq. (4) provide a better fit to the real-time
measurements xi.

Data fitting is performed mathematically on the basis of an identification criterion. The selection of the criterion
determines the function whose maximum and minimum correspond to the solution of the problem. There are several
different identification criteria, but the most widely used are the least-squares and maximum-likelihood criteria. Each
criterion requires a certain level of initial information; criteria with a greater degree of generality require larger amounts of
information. In the present study, we used the mean square error function, expressed as follows:

� ¼
Xn

i¼1

ðti � t̂iÞ
2 (5)

where ti represents the value of the transmission coefficient obtained from experimental measurements at frequency i

(ti ¼ It/Iin, where It is the transmitted intensity and Iin the incident intensity) and t̂i the theoretical value given by the
model. In this case, e is dimensionless because ti and t̂i are dimensionless.
Fig. 1. Diagram of the inverse method.
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The steps to be followed in the minimization process are as follows:
�
 the iterative process starts with an initial approximation y0 and

�
 the next approximation to the solution adds an increment to the initial approximation:

ykþ1 ¼ yk þ Dyk (6)

We proceed in this way until convergence is achieved. A convergence criterion is applied to the derivative of the error
function; we search for the zero value of the derivative, which coincides with a maximum or minimum value. Convergence
can impose demanding conditions such as kDykko�, i.e., the modulus of the increment of the approximation to the
parameters obtained using this method is small and the function barely varies, because an exact solution of the problem is
not usually obtained by numerical methods. Both of the above conditions must be simultaneously fulfilled, because when
the increment of the approximation generates a significant reduction in the error function, the iterative process must
continue until the function is minimized [27,28].

The model was adjusted to the characteristics of the materials. The model used three variables:
�
 The surface density, which was measured. The refinement with respect to the initial value was small, affecting only the
last decimal, which did not cause the value obtained for the isolation to change.

�
 Measurements of the Young’s modulus and shear modulus were carried out by ultrasound and the results were similar

to the input data. The refinement was again small.

�
 The loss factor is a parameter that depends on the frequency; in the model, a constant total loss factor was used. That is

to say, the model, which is an accepted model, simplifies the loss factor to a constant value. This parameter depends on
the internal loss factor, on the irradiation factor of the material and on the conditions of fixation. In our case, we tried to
diminish the effect of the conditions of fixation by means of elastic elements for support. An average value was obtained
with this method that we considered to be valid for the range of frequencies used, considering the tolerance that already
exists in this type of measurement [29].
2.2. Trochidis and Kalaroutis model based on a spatial Fourier transform

This theoretical model consists of two infinite, thin, elastic plates with no connection between them. A sound-absorbing
material is placed between them [2] in such a way that a gap exists between the plates and the intervening material
(Fig. 2).

The multilayer structure is excited with a plane wavefront that is incident on the structure at an angle y from the
direction normal to the structure. The time dependence is assumed to be e�jot, where o is the angular frequency. Zones I, II,
IV and V are described by a Helmholtz scalar equation, representing the propagation of sound in air:

½r2
þ k2

0�piðx; zÞ ¼ 0; i ¼ I; II; IV;V (7)

where k0 ¼ o/c0 is the wavenumber of the sound.
The equation that describes the movement of Plate I can be expressed as

½D1r
4
� r1h1o2�w1ðxÞ ¼ pIðx;0Þ � pIIðx;0Þ (8)

where w1(x) is the plate displacement in the normal direction, r1 the density of the plate material, h1 the thickness of the
plate, D1 the flexural stiffness of the plate and pI(x,z) and pII(x,z) are the sound pressures in Zones I and II, respectively. The
space filled with the sound-absorbing material (Zone III) is represented by a complex wavenumber kb and a complex
Fig. 2. Multilayer model under study.
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density rb. The wave equation for the sound-absorbing material is as follows:

½r2
þ k2

b �pIIIðx; zÞ ¼ 0; h1 þ d1ozodþ h1 þ d1 (9)

The equation that describes the movement of the outer plate, Plate II, is

½D2r
4
� r2h2o2�w2ðxÞ ¼ � pVðx; dþ h1 þ d1 þ h2 þ d2Þ

þ pIVðx; dþ d1 þ h1 þ d2Þ (10)

where pIV(x,z) is the sound pressure in Zone IV (air) and pV(x,z) the sound pressure in Zone V.
This method generates a matrix for the multilayer structure, which is obtained by directly applying the boundary

conditions for the materials. This results in various equations with partial derivatives that can be transformed into
algebraic equations via an SFT. The algebraic equations are then solved, providing information on the acoustic variables of
the multilayer structure.

Once the transmitted sound pressure pt(x,z) is known, the transmission coefficient for a wave incident at an angle y can
be calculated from [1]

tðyÞ ¼ pt

pin

����
����
2

(11)

If the incident pressure field fulfils the conditions of a diffuse field, which is what happens in actual cases, the transmission
coefficient can be obtained from

td ¼

R ylim
0 tðyÞ cos y sin ydyR ylim

0 cos y sin ydy
(12)

where ylim represents the limit angle at which any contribution to the sound field is negligible. From Eq. (9), the
transmission loss can be obtained from the following expression:

TL ¼ �10 log td (13)

The mean square error function is � ¼
Pn

i¼1ðTLi � T̂LiÞ
2, where TLi represents the value of the transmission loss obtained

from the experimental measurements at frequency i and T̂Li is the theoretical value derived from the model. e is expressed
in dB because TLi and T̂Li are also measured in dB.

2.3. Nearfield acoustic holography

The acoustic field of any monochromatic source can be decomposed into an angular spectrum that is defined in the
wavenumber domain as a superposition of plane waves travelling in different directions; however, not all of the waves are
propagated in the normal way: some decay exponentially with increasing distance. Nearfield acoustic holography is a
technique that reconstructs the sound field and vibration velocity of an object or sound source from measurements taken
with microphones placed in a plane that is both parallel to and close to the sound source (see Fig. 3). The nearfield
measurements enable the capture of the evanescent waves (subsonic waves that decay exponentially with increasing
distance from the sound source) that are generated by the sound source and which contain high-resolution details about
Fig. 3. Three measurement planes.
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the source [30,31]. NAH involves the measurement of the amplitude and phase of the sound pressure using a flat array
microphone.

Based on Green’s theorem, an integral can be derived that describes the sound pressure at any point in space between
the sound source and the measurement plane. The complex pressure at any point in free space can be expressed as a
function of the complex pressure �pð Þ in the source plane zs, where �psðx

0; y0; zsÞ is the distribution of the complex pressure on
zs and �G

0
ðx� x0; y� y0; z� zsÞ is the normal derivative of the Green’s function that satisfies the Dirichlet eigenvalue limit

condition on zs [32]:

�pðx; y; zÞ ¼ �

Z 1
�1

Z
�psðx
0; y0; zsÞ �

�G
0
ðx� x0; y� y0; z� zsÞdx0 dy0 (14)

If all points are assumed to be located in the same measurement plane, termed the hologram plane, zh, the above equation
becomes

�phðx; y; zhÞ ¼

Z 1
�1

Z
�psðx
0; y0; zsÞ �

�G
0
ðx� x0; y� y0; zh � zsÞdx0 dy0 (15)

As zh�zs is a constant, Eq. (15) describes a 2-D convolution between the complex pressure in the plane zs and the modified
Green’s function, which becomes a simple product in the wavenumber domain:

�phðkx; ky; zhÞ ¼ �psðkx; ky; zsÞ �
�G
0
ðkx; ky; zh � zsÞ (16)

where zh�zs is defined as the distance between the source plane and the hologram plane. Once the sound pressure
�pðkx; ky; zhÞ is known in the space of k, the particle velocity vector can be determined by applying the Euler equation,
considering the harmonic acoustic fields in the time domain and applying the inverse Fourier transform:

�vðkx; ky; zÞ ¼
1

or kxex þ kyey � iez
q
qz

� �
�pðkx; ky; dÞ (17)

The random error in the prediction plane can be expressed as follows [26]:

s2ðp̂zðm;nÞÞ ¼ D4
X
m

X
n

s2ðp̂Hðm
0;n0ÞÞjhZHðm�m0;n� n0 þ qNÞj2 (18)

where

s2ðp̂Hðm;nÞÞ ¼ s2
1ja1ðm

0;n0Þj2 þ s2
2ja2ðm

0;n0Þj2 (19)

The error due to the position mismatch is given by

s2
1ja1ðm

0;n0Þj2 þ s2
2ja2ðm

0;n0Þj2 ¼ s2
x jVxðm

0;n0Þj2 þ s2
y jVyðm

0;n0Þj2 (20)

The error due to the sensor mismatch is given by

s2
1ja1ðm

0;n0Þj2 þ s2
2ja2ðm

0;n0Þj2 ¼ s2
mjpHðm

0;n0Þj2 þ s2
fjjpHðm

0;n0Þj2 (21)

where pH is the pressure in the hologram plane, Vxðm0;n0Þ the slope in the x direction, Vyðm0;n0Þ the slope in the y direction,
sx the variance of ex, ex the position error in the x direction, sy the variance of ey, ey the position error in the y direction, sm

the variance of ea, ea the magnitude error, sf the variance of ef and ef the phase error.
The amplification ratio R0s of the random error, which takes filtering into account, expresses the relation between the

energies of the random errors in the hologram and prediction planes, gH and gZ, respectively, as follows:

gZ ¼ gH � R0s (22)

10 log10 R0s � 24:9ðd=DzÞ � 5:92ðkdÞ þ 1:55ðd=DzÞ2

þ 5:07ðd=DzÞðkdÞ � 0:25ðkdÞ2 þ 20 log10ðDh=DzÞ dB (23)

where the prediction spacing is DZ ¼ p=k0max and the measurement spacing is DH ¼ p=kmax.

3. Development

3.1. Experimental study using NAH

The test set-up used for the measurements is shown in Fig. 4. The set-up included a rod with holes in which four 1/4 in
microphones were placed 1.5 cm apart. The rod was mounted on a robot that moved the linear array microphone beside the
box. The materials of the multilayer structures used were 49�61 cm in size and were mounted in a window in a wooden
box of dimensions 110.4�69.9�47.3 cm. The wooden box was covered on the inside with a polyester fibre that had an
average absorption coefficient of 0.6. The layers were allowed to settle to ensure that there were no air gaps between the
layers and the sound-absorbing material. All of the panels were mounted with an elastic adhesive at the edge. The sampling
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Fig. 4. Experimental setup and the robot with the array.

Fig. 5. Position of the speakers and multilayer structure.

Fig. 6. Materials used in the study.
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frequency was 44100 Hz and the maximum frequency measured was 22 kHz. The size of the measurement array was
increased until it was double that of the multilayer structure for the minimum frequency of 238 Hz. Two broadband
speakers were located on each side of the box (Fig. 5) and the room was half-lined with sound-absorbing wedges [33].

A pulse of white noise 3 s in duration was generated by the speakers located inside the box and was maintained at the
same intensity for all measurements. The noise generated inside the box was transmitted through the material of the box
window and the response was recorded by the microphones over the measurement area and in the near field. A total of
1064 recordings were taken, distributed in a 28�38 matrix. The materials used in the study were analysed individually
and in combination; they included a 1 mm steel sheet, 2.5 cm polyester wool plates and 3 and 5 mm boards made from a
derivative of wood known as DM, which was formed from a very fine wood powder and had an isotropic behaviour (Fig. 6).
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Measurements were taken at a distance of 2 cm from the window that contained the materials of interest. The data were
then analysed using NAH to calculate the acoustic pressure and the vibration velocity on the surface of the material outside
the window. The filter parameters were kc ¼ 0.6kmax and a ¼ 0.2.

The transmission loss from the interior to the exterior of the box was calculated according to the following equation
[33,34]:

ðLS � LRÞ ¼ TL (24)

where LS is the sound pressure level (measured in dB) in the source region, i.e., inside the box and LR the sound pressure
level in the receiver zone, i.e., on the material surface. Diffusers were placed inside the box to enhance the homogeneity of
the acoustic field. Resonance phenomena are really serious for low frequencies and in small rooms. Above a frequency that
depends on V, the volume of the room, on A, the absorption and on S, the surface area of the walls of the room, the number
of excited modes is such that the acoustic field appears homogeneous and diffuse. Below this frequency, the modes are
more spaced and they are perceived subjectively, giving rise to an acoustic field with heterogeneities. This frequency is
known as the Schroeder frequency and is defined as the frequency where the modes start bunching so closely together that
they no are longer seen as resonance peaks [7]. This frequency can be calculated from Eq. (25) below. In our particular case,
this frequency was 460 Hz.

f min � c
4ffiffi
½
p
�pA
�

S

16V
(25)

An error in the measurement associated with the size of the panel and the effect of the window exists. Some authors
include these effects within the total loss factor, so that in the model, the loss factor has contributions from the internal loss
factor of the material, the loss factor associated with the conditions at the edge (which is reduced here with elastic
elements) and the loss factor associated with the radiation efficiency [29]. In our case, the plates were thin and light and we
know that their own resonances, associated with the wavenumber in the material and the dimensions, produced changes
in the global loss factor. There is a discussion of this in the book by Cremer and Müller [29]. Nevertheless, this always
happens in this type of model; it is something that is assumed as valid by many authors and whose effect is reduced when
a constant value of the loss factor is obtained.

A sampling test of 30 measurements was performed with a microphone inside the box to estimate LS. The data were
averaged, yielding a dispersion of less than 2 percent; this result means that three measurements would have sufficed, but
we decided to average the 30 measurements and then assume a uniform acoustic field. Octave bands were used to display
the TL; the results are shown in Fig. 7. For all frequency ranges, higher values of TL were recorded for the multilayer
structures than for the individual materials (5 mm wooden board and steel). A difference between ‘5 mm wood+wool+steel’
and ‘5 mm wood+steel’ was observed only in the frequency range within which the wool absorbed energy, i.e., at high
sound frequencies; in this range, three-layered structures possessed a higher TL than two-layered systems. With respect to
the TL of the individual materials, the TL for steel was about 5 dB more than that for 5 mm of wood. These data were used as
input data in the inverse method.

The errors associated with the measured transmission loss can be calculated from the equation

qTL

TL

����
���� ¼ qLS

LS

����
����þ qLR

LR

����
���� (26)

LS has a small error because the number of measurements is high, 30 measurements. LR has errors associated with the NAH
measurements. The errors associated with this procedure depend strongly on the NAH measurements. We have evaluated
the random error due to sensor and position mismatch in the planar acoustic holography measurements for a 5 mm
wood+wool+steel multilayer [26]. The bias error can be regarded as negligible. The random error is significant in a
backward prediction. The random error in the prediction plane was obtained for three measurement events. We studied the
Fig. 7. Transmission loss obtained with NAH.
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Fig. 8. Random error due to position mismatch.

Fig. 9. Random error due to sensor mismatch.
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spatial distribution of the random error in the prediction plane. The results for the random error due to position mismatch
at 1 kHz are shown in Fig. 8 and those for the random error due to sensor mismatch are shown in Fig. 9. These figures show
the magnitude of the pressure at the y ¼ 0 line obtained by averaging the three measurement events and the random errors
after wavenumber filtering (10 log10s2) are also plotted. The random errors due to sensor and position mismatch have
different shapes. In terms of their energies, the modified amplification ratio of the random error R0s between the random-
error energies in the hologram and prediction planes is 12.7 dB.

3.2. Application of the inverse method

This section presents an inverse method, based on an SFT, for modelling the TL in multilayer structures using real-time
measurements. The approach uses numerical methods to adjust the variables that define the layers in the system. The
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Fig. 10. Dosplaca software for the calculation of TL.

Fig. 11. Funcapa software adjust flow resistance.

J. Alba et al. / Journal of Sound and Vibration 326 (2009) 190–204 199
results are then compared with those obtained using the Ookura and Saito model, which also predicts the TL in multilayer
structures using values obtained via the inverse method and experimental results obtained using NAH as input parameters
for the layers. Prediction models can also be used to simulate the acoustic behaviour of multilayer structures based on the
acoustic characteristics that define each component element. For sound-impervious materials, these characteristics are the
surface density, critical frequency and loss factor. For sound-absorbing materials, the flow resistance is used as input data.

Based on NAH measurements of the steel sheet and wooden board, various computer programmes were developed to
calculate the mass per unit surface area, the critical frequency and the loss factor, following a procedure described in
previous studies [35,36]. A MATLAB& function named ‘fminsearch’ was used to minimize the error. In this procedure, as
described in the above publications, an error function is reconstructed that causes the model values to converge to the real-
time measurement data. This procedure generates well-fitted parameters for impervious layers. Next, based on the
available data for the ‘5 mm wood+polyester wool+steel’ multilayer structure, the method described in [15] was applied.
This method is a numerical procedure that was used to obtain the flow resistance of wool placed within a double partition.
A MATLAB& function was also used to obtain this parameter with minimum error.

Although the flow resistance (Rayls/m) can be estimated using other methods, we decided to use the above technique
because it is easy to implement and because it calculates the overall response of the system without the need to separate
the two layers that form the polyester wool material. The algorithms used in this analysis are described below in greater
detail. Fig. 10 shows the algorithm that was developed for the calculation of the TL (dB) of multilayer structures using the
SFT model. The input data for the plates and sound-absorbing material are known: h1 and h2 are the plate thicknesses (m),
r1 and r2 are the plate densities (kg/m3), D1 and D2 are the flexural stiffnesses (N m), m1 and m2 are the loss factors of the
plates (dimensionless), lim represents the limit angle (1), N is the number of steps of the angular integration, d is the
thickness of the chamber (m), kb is the complex wavenumber (rad/m) and rb is the complex density of the sound-
absorbing material (kg/m3). By calculating the matrix of the system based on an SFT, we obtain as output data ta (the
transmission coefficient, obtained as a function of the incidence angle) and t (the dimensionless transmission coefficient,
for a diffuse field).
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Fig. 12. Error function (dB) of fc of a single wood plate.

Fig. 13. Error function (dB) of fc of multilayer structure.
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Fig. 11 shows the Funcapa software package, which, given the parameters of the plates, adjusts the flow resistance of the
sound-absorbing material such that the resulting TL fits the TL obtained via NAH. Funcapa calculates the flow resistance
using as input data the critical frequencies fc1 and fc2 of the plates, the surface densities m1 and m2 of the plates and the TL
obtained using NAH. The following MATLAB& function is then run:

y ¼ fminsearchð‘funcapa’;XÞ (27)

where y is the minimum value of the error function, calculated in Funcapa using the criteria expressed
by the function ‘fminsearch’, with respect to the difference between the experimental measurements and the theoretical
value of the TL. Funcapa calculates the error at each iteration, which is retained in order to represent it. X is the
value that starts the function and yields a local minimum y, close to X; the function ‘funcapa’ accepts the input y and
returns a scalar function value. The function ‘fminsearch’ is based on the Nelder–Mead algorithm. This function
minimizes a nonlinear function of n real variables using only function values, with no additional data [37].
The function minimizes the error function � ¼

Pn
i¼1ðTLi � T̂LiÞ

2 calculated in Funcapa and generates an optimal value
that ensures a better fit of the TL to the NAH values. All of the other parameters for the plates, such as the loss
factors and critical frequencies, can be evaluated following the same procedure to obtain a better fit of the TL to the NAH
values. The algorithm identifies the parameters for each individual frequency and then calculates the average in 1/3 octave
bands.

We first considered the simple case of a 5 mm wooden plate. Using the measurements of the TL obtained using NAH and
assuming a loss factor for the wood of 0.02, the range of the critical frequency was constrained to between 800 and
1600 Hz; these values are typical for tables made from this type of wood. Fig. 12 displays the error (measured in dB)
obtained for the critical frequency of this simple wooden plate; the critical frequency was approximately 1140 Hz. Next, a
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Fig. 14. Error function (dB) vs loss factor of multilayer structure.

Fig. 15. Aisla 3.0 software.
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multilayer structure was evaluated, where we considered a range of values of 0–0.05 for the loss factor and a critical
frequency ranging from 500 to 1500 Hz for the layers. The errors were obtained where the minimum error yields the
approximate value of the critical frequency and the loss factor of the wooden layers.

Fig. 13 shows the error (measured in dB) obtained at the critical frequency of the multilayer structure. Note that the
minimum error gives the optimal frequency for fitting, approximately 1070–1090 Hz. Fig. 14 shows the loss factor, which
has an optimal value of approximately 0.020–0.032.

For a single layer, the critical frequency obtained was 1140 Hz, while for the multilayer structure, the value was
1070–1090 Hz. The difference of about 50–70 Hz represents an error of 5–7 percent. This deviation may reflect the fixation
conditions in the two different cases.

To enable comparison with the results of other prediction models for acoustic insulation in multilayer structures, we
used the Aisla 3.0 software package [38] to calculate the TL according to the Ookura and Saito model [1] (Fig. 15). In this
case, only the materials and sound-absorbing material of the multilayer structure were selected. When a material and
thickness are selected, the computer program retrieves from its database the critical frequency, surface density and loss
factor. The program also provides the flow resistance of the sound-absorbing material for the given thickness.
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Table 1
TL (dB) calculated using NAH.

f (Hz) 250 500 1000 2000 4000

TL (dB) Steel 19 23 18 27 34

NAH 5 mm wood 11 15 14 20 26

Table 2
Specifications of the analysed materials.

Steel Wood

Thickness (mm) 1 5

Surface density (kg/m2) 10 3.8

Critical frequency (Hz) 12 500 1000

Loss factor 0.004 0.024

Fig. 16. Comparison of models for 5 mm wood+wool+steel.
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The TL was calculated using NAH as described in the previous section. The TL values for the 5 mm wood and 1 mm steel
plates obtained from the experimental measurements were used as input data for the SFT model (Table 1); the inverse
method was then used to calculate the specific data for each material (Table 2).

The measured value of the critical frequency of the steel plate was 12 500 Hz. On the basis of this result, we considered
that as the critical frequency of the steel plate was outside the measurement range, the model fitted all of the variables, but
the elastic constants did not give real information because there was not sufficient information in the measurements. If we
did not use these results, there would be no significant effect on other predictions either, since all of the other predictions
applied to the same range of frequency. Therefore, the usefulness of the method is limited to materials with a critical
frequency within the measurement range. This can be observed in the measurements, since the critical frequency
corresponds to a diminution of the isolation.

The data obtained using the inverse method was used to calculate the TL for various multilayer structures. The input
data for the model of the absorbing material was the flow resistance, which in the present case was 1200 Rayls/m.

Figs. 16 and 17 show the TL for the ‘5 mm wood+wool+steel’ multilayer structure and ‘3 mm wood+wool+steel’ multilayer
structure, respectively, obtained using the Trochidis and Kalaroutis (based on an SFT), Ookura and Saito (Aisla 3.0) and SEA
models, as well as the TL obtained using NAH. All of the models and the NAH technique yield similar trends for the TL.

Our measurements were carried out using a fast Fourier transform. However, the commercial software package that we
used gives values in octave bands; that is to say, from a set of discrete frequencies in each octave band, energy averages are
obtained and an average represents all of the band. For example, the octave band for 1 kHz groups together frequencies
from 707 to 1414 Hz. Another example is shown in Fig. 18. This graph shows the effect of the bands and the way in which
the values change depending on which band is used. It can be observed that the tendency is the same, but the values are
different. In our case Aisla was chosen in order for us to be able to compare the tendency in our results with the results of a
commercial software package, but the values do not have to agree exactly, because our measurement was based on a fast
Fourier transform.
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Fig. 17. Comparison of models for 3 mm wood+wool+steel.

Fig. 18. Effect of the bands in the TL of a multilayer structure.
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The conditions of connection between the components of the multilayer system act to increase the loss factor, vary the elastic
parameters to a small degree and reduce the TL of the laboratory measurements relative to in situ measurements [39,40].
4. Conclusions

The inverse method employed in the present study provides good results in terms of determining the unknown
parameters for the layers when the Trochidis and Kalaroutis prediction model for the transmission loss in multilayer
structures is used and experimental data obtained by NAH is used as input data. The results obtained by our method were
compared with results obtained using the Ookura and Saito prediction model and the SEA model. The results obtained were
satisfactory for the range of sound frequencies analysed in the study, as limited by the constraints of the experimental
set-up.

Estimates of the effectiveness of acoustic insulation can be complemented by and adjusted with additional
experimental measurements obtained using test set-ups that resemble real environments; such an approach does not
require real-time measurements. We have analysed the effect of measurement errors on the procedure. The most
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significant errors are the random errors due to sensor and position mismatch and can be amplified significantly in the
backward prediction.
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